Why Your Skillset is Critical for the Energy Transition

Heather Binagia, P.E.

Wells Manager

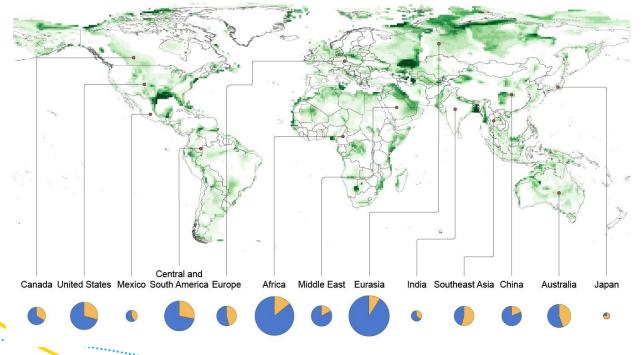
Montana Tech 29th Annual John 'Jocko' Evans Spring Technical Symposium

April 12, 2024

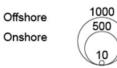
What is Carbon Sequestration?

- <u>CCUS</u> <u>Carbon</u> <u>Capture</u>, <u>Use</u>, & <u>Sequestration</u>
 - Carbon CO2

- Capture gathering CO2 from industrial processes, oil and gas production, or direct air capture
- Use usage of CO2 as industrial gas, or for Enhanced Oil/Gas Recovery
- Sequestration storing and containing CO2 in geological formations
- SO MANY diverse skill sets and experiences are required for the CCUS industry to be successful. How do your skills apply?


Why CCUS?

- CCUS is an important technological option for reducing CO2 emissions in the energy sector and will be <u>essential</u> to achieving the goal of net-zero emissions
- As a country, 79% of US energy consumption is from fossil fuels¹
 - If we hope to decarbonize, CCUS isn't an option, it's a requirement
- The global theoretical capacity for storing CO_2 in deep geological formations far exceeds that required to reach net-zero emissions.
 - Total global storage capacity has been estimated at between 8,000 Gt and 55,000 Gt


1. Data source: U.S. Energy Information Administration, Monthly Energy Review, Table 1.3 and 10.1, April 2023, preliminary data

Global Theoretical Geological CO2 Storage Capacity

Estimated capacity (Gt)

Sedimentary thickness (km)

https://www.iea.org/reports/ccus-in-clean-energy-transitions/ccus-technology-innovation

Where Are We Now?

July 2023 Global Status of CCUS Report

......

- 49 Mtpa (Million tonnes per annum) of CO2 capture capacity in operation
 - 32 Mtpa in construction, 280 Mtpa in development
- 41 facilities in operation
 - 26 in construction, 325 in development
- 198 new CCS facilities added to the project pipeline from prior year, and year-on-year growth has been >50% since 2020
- Significant policy incentives have been created that have driven growth, especially in North America and Europe
- 3 US states have gained Class VI primacy from EPA ND, WY, LA

Despite this growth, the rate of development is not keeping pace with potential future demand, even in leading jurisdictions.

How Do We Get There?

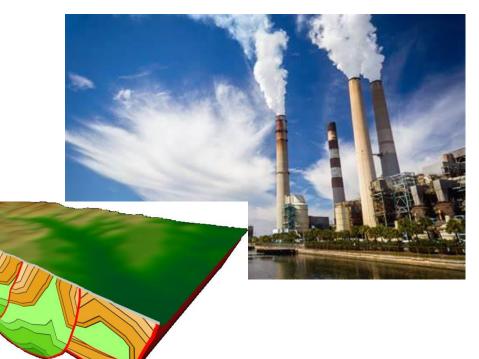
- Projects must be commercialized historically projects have been proof of concept and first movers
- Industries and companies must collaborate, even among competitors, to get to common solutions and standard practices
- Offshore sequestration is a must to access capacity needed
- Projects face significant regulatory hurdles

......

- Fossil fuels can be harnessed to achieve very low carbon intensity products when combined with CCUS
- EIA's Net Zero case requires 50-100% scale up in workforce, especially highly skilled workers (<u>YOU!</u>)

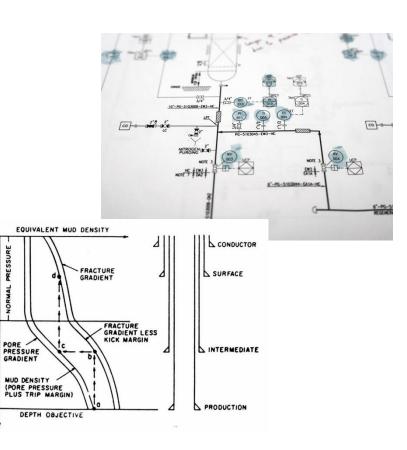
Basic Steps of CCUS Projects

- Identify a source of CO2
- Identify a sequestration reservoir
- Geological and Geophysical evaluation
- Gather well information test wells and legacy wells
- Sequestration site permitting
- Design and build pipeline
- Design and construct injection and monitor wells
- Sequester CO2 (operations phase)


• Long-term monitoring and site closure

Project Feasibility Phase

- Identification of source where is CO2 coming from?
 - Business development
- Design and engineering for capture method
 - Mechanical engineering
 - Chemical engineering
- Identification of sequestration site
 - Geology
 - Geophysics
 - Reservoir engineering
 - Land & Legal considerations

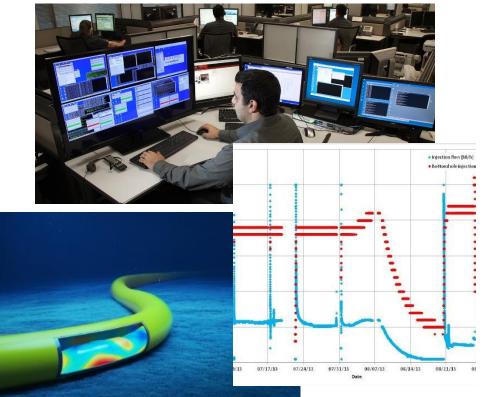

.....

Project Design Phase

- Capture Facility
 - Construction
 - Mechanical Engineering
 - Chemical Engineering
 - EH&S
- CO2 Transportation Pipelines
 - Materials/Metallurgy
 - Flow Assurance (ensure CO2 remains in desired state)
 - Facilities Engineering
 - Environmental Engineering
- Well Planning and Design
 - Geology & Geophysics
 - Drilling & Completions Engineering
 - Materials/Metallurgy

Project Development Phase

- Facility and Pipeline Construction
 - Construction Management
 - EH&S
 - Mechanical Engineering
 - Controls and Automation
- Well Construction
 - Drilling & Completions Engineering
 - Geology
 - EH&S
 - Data Management
 - Regulatory Management

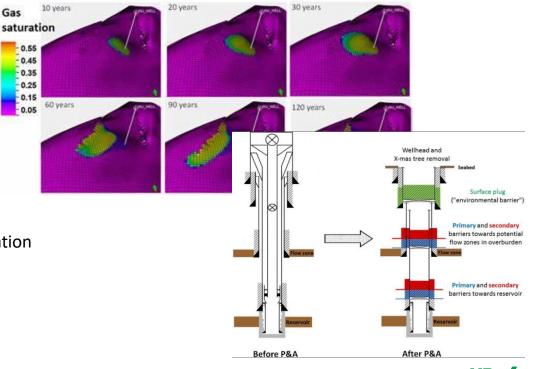

......

Sequestration Operations

- Well Monitoring and Injection Optimization
 - Petroleum Engineering Operations and Reservoir
 - Geology and Geophysics
 - Data Management
- Permitting and Reporting
 - Regulatory Management
 - Land and Legal Management
 - Petroleum Engineering
 - Environmental Engineering
- Interventions
 - Petroleum Engineering
 - EH&S
 - Materials and Metallurgical Engineering
 - Chemical Engineering
 - Geology and Geophysics

Post Injection Site Care and Closure

Gas


0.55 0.45

0.35 -0.25

0.15

0.05

- Long-term Monitoring (50+ years)
 - Petroleum Engineering ٠
 - Geology and Geophysics
 - Data Management ٠
 - **Environmental Engineering**
- Permitting and Reporting ٠
 - Regulatory Management •
 - Land and Legal Management ٠
 - Petroleum Engineering ٠
- Plug and Abandonment & Site Restoration ٠
 - Petroleum Engineering ٠
 - **Regulatory Management** ٠
 - Land & Legal Management ٠
 - Data Management

...........

Thank you tell me more

