Quantifying Multiphase Flow Behavior in Small-Diameter Vertical Pipes

Umaer Abdullah Zaki

April 11th-13th, 2024 Montana Technological University Butte, Montana, USA

Introduction

Umaer Abdullah Zaki

- 1st year Masters Candidate
- From Dhaka, Bangladesh
- Working with Dr. Burt Todd, quantifying multiphase flow in small-diameter pipes

Presentation

- Review Matt Malin's work
- Montana Tech Vertical Flow Loop (MTVFL) Enhancements
- Future Research Goals using the MTVFL
- My Personal Research Focus

Previous Work

 "An Investigation into the Mechanisms of Liquid Loading in Small-Diameter Vertical Pipes"

Masters Thesis, Matt Malin, 2019

 SPE Paper #23OKOG-P-128-SPE, "An Investigation into the Mechanisms of Liquid Loading in Small-Diameter Vertical Pipes"
Presented at 2023 SPE OKC Oil & Gas Symposium – Matt Malin
Presented at the 2023 Montana Tech SPE Symposium – Burt Todd

Motivation for Malin's Work

- Liquid loading of gas producers limits their late-life productivity
- Sometimes excess liquid can be removed from gas wells using smalldiameter "siphon strings" to produce the liquids
- Multiphase flow in small diameter pipes is poorly understood

MTVFL

- Four pipe sizes (2", 1", 0.75" & 0.5")
- Air and water as proxies for gas and oil
 - Air rate range: 9-90 scfm
 - Water rate range: 2-20 gpm
 - These rates are for Malin's work
- Visually observe flow through transparent pipes
- Measure air and water rates, and inlet and outlet pressure

Key Points from Malin's work

Flow experiments in MTVFL

- Ran Flow experiments over a range of air and water rates
- Conducted experiments in 2" and 1" flow tubes
- Visual observations of the flow behavior
- Development of "Flow Morphology Matrix"

Average air & water flow data for 25 trials of the 1.0" flow experiments (ref. Mat Malin)

Flow Morphology Matrix

Liquid Film Intensity Morphology Matrix							
Morpholog	y Ranking	Liquid Slug Length					
1		no liquid slugs					
2		Initial bridging, incomplete					
		slug formation					
	a	less than 3"					
	b	between 3" – 3"					
2	с	between 6" – 12"					
5	d	between 12" – 24"					
	e	between 24" - 36"					
	f	greater than 36"					

Liquid Film Intensity Rating : 3bc

(This analysis was performed for a total of 62 Flow experiments)

Visual of a flow experiment trial, 14 scfm air, 4 gpm water

Flow Regime Maps

- Malin subdivided his flow morphology matrix according to these flow regimes
- Four flow regimes that the flow morphology matrix aims to identify
- Bubble, Slug, Churn, and Annular
- Liquid loading starts to happen transitioning from annular flow to churn flow

Flow Regime Maps

Transition in Flow Patterns

Figure: 2" Continuous upward flow data with 4stage flow behavior progression

TECHNOLOGICAL UNIVERSITY

Figure: 1" Continuous upward flow data with 4stage flow behavior progression

Summary of Malin's Findings

- Liquid loading in small pipes occurs during the transition from annular-mist to churn flow.
- The Annular-Mist/Churn boundary location depends on tubing ID for diameters less than 2.0".
- Long liquid slugs were observed in the 1.0" pipe even during Annular-Mist flow.
- The Turner velocity model isn't accurate for pipe diameters below 2.0".
- Malin's research identified limitations in the MTVFL that need correction for future research.
- Visually observing flow in transparent pipes is challenging and labor-intensive.

MTVFL Enhancements

- MTVFL is useful for undergraduate lab observations
- Air rates were excessively high
 - Malin's Air Rate Range \rightarrow 9 90 scfm
 - New Air Rate Range \rightarrow 6 60 scfm
- Water rates were excessively high
 - Malin's water Rate Range \rightarrow 8 80 gpm
 - New water Rate Range \rightarrow 2 20 gpm
- Better valve action when switching between tubing sizes

Goals of Future Research

• If the annular-mist/churn flow regime boundary is a function of tubing size, does this not explain why standard multiphase flow correlations struggle to predict performance of small-diameter pipes?

Comparison of Orkiszewski FR map with Orkiszewski/Wu Hybrid model – 2.0" Tubing

Comparison of Orkiszewski FR map with Orkiszewski/Wu Hybrid model – 1.0" Tubing

Goals of Future Research

- Malin observed long liquid slugs in 1.0" pipe, even during Annular-Mist flow
 - Small tubing diameter promotes bridging and slugging
 - Classic multiphase flow theory says these slugs should not exist
 - Their presence may help explain the effectiveness of small diameter pipes in liquid removal
 - How can we best exploit this behavior?
- Malin observed a different character of flow changing from 2.0" to 1.0" pipe
 - Do these trends extend into flow in 0.75" and 0.5" pipes?
 - Do these trends become more exaggerated, or do they stabilize?

Personal Research Focus

Present

- Perform test runs with new air handler and water pump
 - Verification of air & water rates
- Re-calibration of the flow loop
- Define current capacity of the MTVFL
 - Maximum and minimum air and water rates
 - For each tubing size
- Test valves to access the 0.75" and 0.5" pipes

Personal Research Focus

Future

- Literature Review
 - Evaluate flow boundary conditions from peer-reviewed journals
 - Focus on the high-gas rate side of the Flow Regime Map
- Determine the rate ranges we can cover for each pipe size
 - Based on this result, determine which of the Future Research Goals we can address with the current MTVFL configuration
- Determine air rates and water rates needed to evaluate all of the Future Research Goals
 - This will lead to future enhancement recommendations

Air rate

- Stable air rate from 8 scfm 50 scfm
- Air rate maxes out at 60 scfm
- At higher air command actual air rates gradually fall, but short periods of shut-off and start-up can again give rise to threshold maximum value

Air command & rates for 10 gpm of water

Water rate

- Water rate fluctuates at lower and higher air command rates
- Water rates show stabilization at medium air command rates
- This observation is for mixed air-water flow rates
- General capacity of water pump 2 gpm 20 gpm

Water command & rates for mixed air-water flow

- Test calculation of flow loop run
- Comparison between our observation & Orkiszewski's map
- Data points at Bubble slug prove our verification of air rates (at low air commands pump shows unrealistic – results)

Dimensionless Gas Velocity

Operating Range – 2.0" pipe

- Without our current MTVFL capacity we can operate in this range.
- But this range could shift rightwards (Annular-Mist region) if we operate in 1" pipe (reference: Mat Malin)

Gas rate						
ft3/min (scfm)	m/s					
6	1.59					
60	15.90					
Water rate						
gpm	m/s					
4	0.14					
40	1.42					

Wu et al. (2017) flow regime map for 2" tubing

Operating Range – 1.0" pipe

- Without our current MTVFL capacity we can operate in this range.
- But this range could shift rightwards (Annular-Mist region) if we operate in 1" pipe (reference: Mat Malin)

Gas rate						
ft3/min (scfm)	m/s					
6	5.59					
60	55.88					
Water rate						
gpm	m/s					
4	0.50					
40	4.98					

Wu et al. (2017) flow regime map for 1" tubing

Air Handler Calibration

- Pressures calculated by Orkiszewski systematically lower than measured
- If gas rate is multiplied by 0.3, the pressure match is nearly perfect
- Indicates gas rates from new air handler not properly calibrated

Air Handler PLC Code

Name 🔺	Alias	Data Type	Dimension	Project Value	Initial Value	Comment	String Size
DO_Int_Cont_19		BOOL		FALSE			
FlowControlValveComma		REAL	-	1.0	0.0		
FlowOrficeMax		REAL	•	200.0	200.0		
FlowOrficeMin		REAL	-	0.0	0.0		
FlwLoop1HighAlarm	Flow Loop 1 Pressure Hig	BOOL	•	FALSE			
FlwLoop1HighHighAlarm	Flow Loop 1 Pressure Cri	BOOL	•	FALSE			
FlwLoop2HighAlarm	Flow Loop 2 Pressure Hig	BOOL	•	FALSE			
FlwLoop2HighHighAlarm	Flow Loop 2 Pressure Cri	BOOL	-	FALSE			
FlwLoop3HighAlarm	Flow Loop 3 Pressure Hig	BOOL	•	FALSE			
FlwLoop3HighHighAlarm	Flow Loop 3 Pressure Cri	BOOL		FALSE			
FlwLoop4HighAlarm	Flow Loop 4 Pressure Hig	BOOL	•	FALSE			
FlwLoop4HighHighAlarm	Flow Loop 4 Pressure Cri	BOOL	•	FALSE			

- PLC code analysis
- Identify variables that can be modified to calibrate flow rates

Near-Term Tasks

- Finish Recalibrating the Flow Loop, Revising PLC code as necessary
- Implement advanced verification techniques for air and water flow rates
- Verify functionality of Valving/Flow tube switching controls
- Determine the applicable range for conducting tests within the current MTVFL configuration

Near-Term Tasks

- Isolate specific test question(s)
- Evaluate those questions by
 - Measuring flow properties with the MTVFL
 - Compare measured results with the Orkiszewski flow correlation
 - Make enhancements as needed
- Present these results next year at the 30th Montana Tech SPE Symposium!!

Acknowledgements

- Professor Dr Burt Todd
- Professor David Rathgeber

Questions?

Thank you for your time and attention

