SPE's 29th Annual John "Jocko" Evans Symposium

Evaluating the Potential of Enhanced Oil Recovery (EOR) to Increase Oil Production in Montana

Noel Dapilee, Suayiri

Graduate Student, MT Tech

What's The Problem?

Declining Oil Production

- Low oil production rates
- Can production be improved ?
 - EOR potential

Figure 1: Montana Oil production 1980-2023 (EIA,2023)

Where Are We Doing This?

What We Are Doing To Increase Production?

- Estimate oil remaining in Montana's known oilfields
- Investigate potential of enhanced oil recovery opportunity

TECHNOLOGICAL UNIVERSITY

How Are We Going To Do It?

Phase 1

- Determine oil in place and remaining oil in Montana
 - Quality control/assessment of production and reservoir data
 - Select fields for further investigation for EOR potential Based on:
 - i. Recovery factor at present
 - ii. Development Phase
 - iii. EOR screening criteria (formation depths, pressure, fluid types-ideal conditions for EOR)

How Are We Going To Do It?

Phase 2

- Study selected field(s) in detail (Geology and Reservoir Characteristics)
- Perform reservoir simulation to determine the effectiveness of EOR
- Make recommendations for future development

- Limited source of data
 - Montana Geological Society (MGS) production data pre 1986.
 - Montana Board of Oil and Gas (MBOG) post 1986
- Incomplete data
 - Saturation, porosity, area etc.
- Inconsistent production data
 - Fields producing from multiple formations
 - Pre and post 1986 data inconsistent

MGS data

MONTANA GEOLOGICAL SOCIETY 281

By Matthew R. Silverman Texas Gas Exploration Denver, Colorado December 1, 1985

GENERAL FIELD DATA

Regional Setting: Central Montana Uplift

Surface Formations and Elevation: Bearpaw Shale 3000'

Discovery Well and Date: True Oil #42-10 71 Ranch Co. Completed 9-5-76. **Exploration Methods:**

Subsurface geology, land play, limited seismic, stratigraphy later.

Oldest Horizon Penetrated: Mississippian Otter Formation **Horizons with Shows**:

Lower Tyler sandstone body Nature of Trap:

Stratigraphic, isolated sandstone body Area of Trap:

No. of Producing Wells: 13 Abandoned Wells: 0

Shut In/Temp Abdn Wells: 0 Disposal/Injection Wells: 0 Dry Holes: 10

Major Operators: True Oil, Petroleum, Inc., Coastal Oil & Gas, Milestone Petroleum

Drilling and Casing Practices: Drill 175' of 124'' surface hole, set 8%'' casing. Drill out with 7%'' bit. Mud up around Third Cat Creek Sand. Run 5%'' production casing.

Logging Suite: Dual Induction, Sonic

Testing Practices:

DST's currently uncommon due to underpressured conditions. Originally run on sample shows.

Market:

Trucked to Melstone and shipped by Conoco pipeline; thence to Billings

RESERVOIR DATA

Producing Formation: Lower Tyler 'B' Sandstone Lithology, Continuity, Thickness: Continuous, shoestring, 10' to 40' thick (gross). Sug Donth (& MSL).

BREED CREEK FIELD T.12&13 N., R.33 E.

Rosebud County, Montana

6.4%, maximum 26.6%, average 17.2%; Permeability: minimum 0.30 md, maximum 185 md, average 12.86 md).

Oil, Gas Column: (Water Contact MSL): About 115', little gas or water produced, OWC approx. -1883.

Avg. Net Pay Thickness:

Area this Reservoir: 440 acres (Stensvad Sandstone produces in 2 other wells)

Order/Docket No. and Spacing Details: 40 acre: statewide spacing regulations **BO/MCF Per Acre-Foot:**

215-250 BO/Acre-Foot

Drive Mechanism: Dissolved-gas drive

Character of Oil/Gas: 32 degrees API, Viscosity: 2.5 cp, sweet Gas-Oil Ratio:

Unknown, low Water Rw, Salinity:

Approx. 0.15 @ BHT Avg. Saturation:

Logs calculate Sw = 25-35%, average So in core = 18.8%, 4.4% minimum, 32.7% maximum.

Initial and Present Pressure: 1945 lbs. initial, 200-400 lbs. present

Temperature: 120 degrees F = BHT average Initial Potential (High, Low, Avg.):

270 BOPD, 6 BOPD, 74 BOP Decline Rate:

Unknowr Present Daily Avg. Production:

29 BOPD per well Amount of Water Produced: 10,974 BW

Completion/Perforation/Treatment: Frac, small acid job

Cumulative Production:

692,137 BO

Est. Ultimate Primary Recovery: 1.000.000 BC

Est. Ultimate Secondary Recovery:

ANNUAL PRODUCTION HISTORY CHART

NO. O	OF WELI	.S @ YR	PRODUCTION OIL IN BARRELS GAS IN MCF					
YEAR	TYPE	PROD.	SHUT-IN	ANNUAL	CUMULATIVE			
1976	ŌIL	2		19,084	19,084			
	GAS							
1977	OIL	5		149,132	168,216			
	GAS							
1978	OIL	2		79,362	247,578			
	GAS							
1979	OIL	4		100,589	348,178			
	GAS							
1980	OIL	4		110,529	458,707			
	GAS							
1981	OIL	4		83,469	542,176			
	GAS							
1982	OIL	4		57,269	599,445			
	GAS							
1983	OIL	10		92,692	692,137			
	GAS	40	40					

MBOG data

Image: 1 Image: 1

Annual Production By Field

1							
<u>FIELD</u>	<u>Year</u>	FMTN CODE	<u>PROD ZONE</u>	<u>BBLS OIL</u>	<u>MCF GAS</u>	REPORTED WELLS	REPORTED WELL DAYS
Divide	1986	MAD	Madison	33060	11633	4	1445
Divide	1986	RAT	Ratcliffe	89514	20171	4	1430
Divide	1987	MAD	Madison	30457	11472	4	1434
Divide	1987	RAT	Ratcliffe	79297	32288	5	1577
Divide	1987	RR	Red River	42797	18300	1	196
Divide	1988	MAD	Madison	27136	11560	4	1445
Divide	1988	RAT	Ratcliffe	73535	28557	6	1654
Divide	1988	RR	Red River	153675	62625	3	906
Divide	1989	MAD	Madison	23390	11456	4	1432
Divide	1989	RAT	Ratcliffe	68177	20061	5	1658
Divide	1989	RR	Red River	90123	49712	3	1035
Divide	1990	MAD	Madison	20999	11424	4	1428
Divide	1990	RAT	Ratcliffe	63660	16181	5	1421
Divide	1990	RR	Red River	69312	38416	3	1076
Divide	1991	MAD	Madison	13894	8488	3	1051
Divide	1991	MC	Mission Canyon	4652	2840	1	355

MONTANA TECHNOLOGICAL UNIVERSITY

- Limited source of data
 - Montana Geological Society (MGS) production data pre 1986.
 - Montana Board of Oil and Gas (MBOG) post 1986
- Incomplete data
 - Saturation, porosity, area etc.
- Inconsistent production data
 - Fields producing from multiple formations
 - Pre and post 1986 data inconsistent

FIELD	-	Area 🖣	FLUIDS -	AREAL 🚽	FM	-	PHIE	- F	PERM	-	THICKNES	oil wt	-	gas/oil ratio 🚽
Devil's Pocket		CMT	oil	N/A	Heath		0.03	33 N	I/A		103.0	26	.5	N/A
Divide		WB	oil & gas	1430	Ratcliffe		0.	.1 .8	85-14		25.0	:	33	0.44
				\implies	Red River					_				
				\Rightarrow	Ratcliffe, Mission Canyon									
					Mission Canyon									
Dugout Creek		WB	oil	320	Red River 'C'		0.07	4		2	32.0	4	48	972.5
Dugout Creek, South					Red River 'C'									
	_				Bakken									
		WB	oil	4500	Ratcliffe		0.11	1.	1-3.0		37.6	:	36	400
		WB		160	Interlake		N/A	N	I/A		15.0	4	42	222
		WB		320	Red River		0.1	5	4	42	31.0	4	41	630
		WB	oil		Ratcliffe						18.0	:	34	500
		WB			Mission Canyon						25.0	:	37	500
		WB			Duperow		0.1	2			7.0	:	39	1200
		WB			Red River		0.1	5			7.0	;	38	550
East Glacier		SG	oil		Cretaceous Greenhorn		0.1	5			100.0	4	45	325 to 1
		SG		500	Mississippian Sun River		0.0	03			90.0		64	41000 to 1
		BH	oil & gas	700	Cretaceous Frontier		0.	.1			60.0	4	43	475
		BH			Torchlight and Peay sands		0.1	9			40.0			
		BH		200	Greybull "A&B"		0.	2			45.0			
		BH		7000	Tensleep/ Phophoria		0.1	5 5	0-550		110.0	:	30	135-490
		BH		5100	Madison		0.1	2 3	3-368		27.0	2	28	200
		BH		600	Jefferson/Bighorn		0.0	07		4	120.0	2	27	300, 80
Elk Basin, Northwest		BH	oil & gas	120	Cretaceous Frontier		0.1	8			35	4	45	1850
		BH		120	Peay/ Greybull		0.1	5			20	4	46	1350
		BH		480	Pennsulvanian Tensleep		0.1	3 2	20-25		45	:	36	720
		BH		160	Mississippian Madison		0.1	2 3	3-368		60	:	33	160
					Cloverly									
					Embar, Tensleep									
		WB	oil & gas	231907	Bakken		0.1	2.0	0106		30.0	4	42	

- Limited source of data
 - Montana Geological Society (MGS) production data pre 1986.
 - Montana Board of Oil and Gas (MBOG) post 1986
- Incomplete data
 - Saturation, porosity, area etc.
- Inconsistent production data
 - Fields producing from multiple formations
 - Pre and post 1986 data inconsistent

- For fields with consistent formation or production data pre and post 1986. No assumptions are necessary :
 - OOIP, total oil production and recovery factor reliably
- For fields with inconsistent formation and production data. Assumptions must be made:

Phase 1

Goals of Phase 1:

- Address inconsistencies in the data
- Estimate the remaining oil in place in known oilfields
- Determine the current development phase of each field
- Using Taber(1997) criteria to select the most appropriate EOR methods for the fields

Estimation of Oil Originally in Place (OOIP)

Oil originally in place is calculated using volumetric analysis

Estimation of Oil Originally in Place (OOIP)

Challenges with Estimating OOIP:

• Missing parameters include: water saturation, porosity, temperature, pressure and API gravity

Standing's correlation:
$$B_o = 0.9759 + 0.000120 \left[R_S \left(\frac{\gamma_g}{\gamma_o} \right)^{0.5} + 1.25T \right]^{1.2}$$

Estimation of Oil Originally in Place (OOIP)

Remedy:

FIELD	FM	• DEPTH	▼ PHIE	Ŧ	PERM	▼ oil wt	v \$	AT 🔻
Fort Gilbert	Ratcliffe/ Mission Canyon		9100	0.06			34	0.29
	Duperow "C"		10900	0.24			46	0.28
	Red River "C"		12500	0.14			48	0.3

Estimation of cumulative oil production

The total oil production for each field is calculated by adding yearly production since production start to present or end (fields where production was stopped).

Estimation oil remaining and recovery factors

The remaining oil in place could be estimated by subtracting the cumulative oil production from the oil originally in place.

Oil remaining = *OOIP* – *Cumulative oil production*

Recovery factor, refers to the fraction of the reservoir which has been recovered/ produced with respect to the oil in place.

Recovery factor = $\frac{Cumulative \ Oil \ production}{OOIP}$

Current Field Development Phase

Production History 10000 Water 1000 Production, Bbls or MCF per Month Oil 100· 10 -Gas 7/1/1986 1/1/1987 7/1/1988 7/1/1987 1/1/1988 Date (Month)

Most oilfields in Montana are currently under water flood

MONTANA TECHNOLOGICAL UNIVERSITY

21

EOR Screening Criterion

- Based the reservoir rock properties, fluid properties and geologic setting of the oil fields, Taber (1997) screening criteria was used.
- Expected incremental recovery factor:
 - Carbon dioxide (CO₂) injection 8-20%
 - Miscible gas injection 5-10%
 - Polymer/Surfactant flooding 5-8%

Taber EOR Screening Criteria

	0	Oil Properties Reservoir Characteristics								
				Oil		Net	Average			
EOR	Gravity	Viscosity		Saturation	Formation	Thickness	Perm	Depth	Temp	
Method	(API)	(cp)	Composition	(%PV)	Туре	(ft)	(md)	(ft)	(°F)	
			Gas	Injection Me	thods (Miscibl	e)				
Nitrogen	>357487	<0.4\2\	High percent	>407757	Sandstone	Thin unless	NC	>6000	NC	
& flue gas			of C ₁ to C ₇		Or	dipping				
					carbonate					
Hydrocarbon	>237417	<3ዾ0.5レ	High percent	>307807	Sandstone	Thin unless	NC	>4000	NC	
			of C_2 to C_7		Or	dipping				
		-10\11 E\1	Link percent	- 207557	Carbonate	Mide renge	NC	- 2500	NIC	
CO_2	>22/130/1	21021.52	Hign percent	>20/155/1	Sandstone	Wide range	INC	>2500	NC	
			of C ₅ to C ₇		carbonate					
Immiscible	>12	<600	NC	>357707	NC	NC if	NC	>1800	NC	
gases	- 12			2007.70.		dipping		>1800	NC	
Bases						and/or good				
						vertical				
						permeability				
			Enha	nced W	aterfloo	ding				
h fi selles	- 20 7 25 7	-253.123.	Links inter		Conditions		1074507	. 2000	1 200	
Micellar	>20/135/1	<327137	Light, inter-	>35/153/1	Sandstone	NC	>10/450/	>9000	>200	
Polymer,			Mediate		preierrea			3,250	780	
ASP/Alkanne			some organic							
			acius ion							
			floods							
			noous							
Polymer	>15	<150.>10	NC	>507807	Sandstone	NC	>50	<11.500	>100	
Flooding		,			preferred			≥3,500	135 لا	
10000118		<u> </u>	Th	ermal/[Mechani	ic				
				ermaly	viecham					
Combustion	>35⊅48→	<5,000	Some	>50/72/	High-	>10	>50	<11,5000	100	
			Asphaltic		porosity			≥3,500	7135	
		1,200	Components		Sand/					
					sandstone					
Steam	>8 to	<200,000	NC	>407667	High-	>20	>20072,5407	<4500	NC	
	13.5	↓			porosity			1,500 ₪		
		4,700			Sand/					
					sandstone					

Source: SPE_5557, (James, 2009)

Phase 1-Outcome

Total oilfields known in Montana: 350

Total oilfields in study: 50

Cumulative OIIP: **4.6 Billion stb of oil**

Cumulative oil production: 725 Million stb of oil

Cumulative remaining oil: **3.8 Billion stb of oil**

10% incremental recovery: 460 Million stb of oil

There still exist some level of uncertainty in these volumes

50 Oilfields

Phase 2

- **Breed creek** oil field has been chosen for the study
- Build a reservoir model and perform flow simulations
- Make recommendations for future development
- Expecting a 10% increment: 800,000 stb of oil

Questions?

Thank you for your time and attention

