BEYOND BCRS: THE USE OF PEAT SORPTION MEDIA TO TREAT MINE DRAINAGE

Paul Eger Global Minerals Engineering Peggy Jones, Doug Green American Peat Technology

Global Minerals Engineering

Road Map

- Passive treatment of trace metals
- Peat sorption media
- Site
- Pilot testing
 - Design
 - Results
- Summary

Passive Treatment of Mine Drainage Biochemical Reactors (BCR)

Constructed Treatment Wetlands

Biochemical Reactors

BCR Design

- Organic substrate
 - Generally mixture
 - Hay, wood chips, limestone, manure
- Vertical flow
- Anaerobic processes
- Microbial driven
 - Sulfate reducing bacteria

Constructed Treatment Wetlands

- Horizontal flow across surface
- Water depths generally 6-12″
- Aerobic Processes
- Primary removal -interaction with substrate

Limitations

Wetlands

- Large footprint
- Winter performance
 - Flow distribution
- BCRs
 - Initial release of organic rich water
 BOD
 - Nutrients
 - Color lasts ~ 3-6 months
 - Odors
 - Hydrogen sulfide

Residence time ~ 1-2 days

What is Peat sorption media? APTsorbTM

Patented peat based sorption mediaHardened granule

Properties

- Size -10, +30 mesh (0.6 to 2 mm)
- Large surface area

- High hydraulic conductivity (~0.5 cm/sec)
- High metal affinity (1-15% max dry wgt)

Granule 2000x

Mechanisms

Dissolved Metal Removal

- Ion exchange
- Adsorption
- Chemisorption
- Complexation
- Adsorption-complexation
- Particulate Metal Removal
 - Filtration
 - Interaction with surface
 - Successful removal of 3 5 micron particles

The Site

Base metal mine

Characterization

- Direct discharge from active underground mine
 - Water quality
 - Elevated and variable suspended solids
 - □ pH ~ 8
 - Pb controlling metal

	Concentration ug/L			
Metal	Total	Dissolved	Permit	
Pb	2100	150	11.5	
Zn	115	70	137.3	
Cd	0.8	0.2	0.5	

■ Flow up to 8,000 gallons/min

Pilot Test

Biocells

- Input water filtered through sand filter
- □ Media, -10, +30 mesh

Design

	Biocell	Flow rate gpm	Hydraulic loading gpm/ft ²	Residence time min
	1	0.6	0.25	60
<	2	2.4	1	15
	3	1.2	0.5	30

10 month pilot test Temperature -10 to 100

RESULTS

Biocells Solids Removal

Sand filter did not remove all suspended solids
Solids confined to top inches

ACTIVE MINE DISCHARGE

Pilot Design

BV 0.21.93.65.27.59.713.018.3Min 21530456585115160

Good News: water meets discharge limits, but....

What do we do with the exchange media?

Removing Media

Light weightEasily moved by pumping or suction

Disposal Options

Potential metal recovery

- Pb ~1%
- Ore 3%

Disposal in tailings basin

- Potential amendment to improve vegetation
- Off site disposal
 - TCLP
 - Metals strongly bound to media

TCLP- Stormwater

Metal Plating Facility; 3 years

Parameter	Influent ug/L	Solid (mg/kg)
Chromium	526	1346
Cadmium	219	566
Zinc	565	1338

	Regulated	TCLP	% metal
	Level	results	released
Contaminant	(mg/L)	(mg/L)	
Cadmium	1	0.1	0.4
Chromium	5	ND	< 0.01
Zinc	NR	2.8	4.6

How long will the media last?

Longevity - Single Cell Systems

Application	Duration	Metals of concern	Time between media change	Bed volumes treated
Mine water	1 year	Cu	>1 year	3 2, 000
Mine water	9 months	Pb,	> 9 month	28,000
Mine water	5 months	Zn, Pb, cd	4 months	12,500
Stormwater	9 years	Cr, Cd, Zr	n 1.5 to 3 years	500-1000
Roof runoff	3 years	Zn	>3 years?	Unknown
Stormwater	7 years	Cu	> 3months	Unknown

Comparison – Trace Metal Removal				
Treatment	pН	Residence time	Nuisance parameters	Winter Operation
Wetland	6-8	1-2 days	Initial Fe, color	Problematic
BCR	3-8	1-2 days	Color, BOD, nutrients, odor	Needs insulation
Peat Sorption Media	6-8	15 min	Minimal color	Needs insulation

Summary

- Met permit limits
- Cost effective
 - 30 cents/1000 gallons
 - Reduce costs with lead/lag approach
- Transmits water like coarse sand
- Short contact time
 - 15 minutes
- No nuisance parameters
- Easy to replace
- Potential metal recovery

paul.eger@globalmineralseng.com 218-969-6483

Global Minerals Engineering