Metallurgical  &  Materials
Metallurgical & Materials Engineering
Future Students  |  Current Students  |  Academics  |  Alumni   |    Giving   |   Faculty & Staff   |   Visitors  |   Athletics

Curriculum (continued)

The former exposes the student to all disciplines through seminars and fieldtrips and simultaneously helps the student to learn how to succeed. The latter introduces the student to particulate systems predominantly focusing on mineral processing but also emphasizing the importance on “downstream” operations and is therefore a core course to the program. M&ME Safety and Health introduces the student to issues often encountered in the laboratory and industry. These safety and health issues are then discussed throughout the program along with ethics. Other introductory M&ME courses are taken, often in conjunction with laboratory exercises and demonstrations.
In mineral processing/extractive metallurgy, the basic educational emphasis is in mass balancing, thermodynamics, modeling, and unit operations in size reduction, classification, thickening, filtration, drying, flotation, gravity, electrostatic, magnetic, leaching, solution concentration, solution purification, smelting and refining. Extensive consideration is given to the economic and social impact of all these processes and the student is trained in methods and technologies that are environmentally friendly. In physical metallurgy, materials processing, and welding, the chemical, physical and mechanical properties of the various materials are introduced and related to bonding as well as crystal, molecular and grain structures. Unit operations that are used to control bonding and structures, and thereby properties, are covered in detail and include but are not limited to alloying, forging, extruding, casting, rolling, joining, heat treating, surface engineering, and powdering. Additional courses such as Transport Phenomena & Design, Mass Transfer & Chemical Kinetics, and Metallurgical & Materials Thermodynamics also help build the foundation to the program.

Having mastered these courses, the student will advance to the junior and senior level to learn more about diffusion and other mass transfer processes; high-temperature chemistry of liquid and solid alloys, oxide/silicate solutions (slags), sulfide solutions (mattes), fused salts, cement, and metal-bearing vapors; binary and ternary phase diagrams; aqueous inorganic chemistry; heat-treating, casting, working and mechanical testing; elements of process design; and fundamentals of ceramic and polymeric materials. Basic scientific knowledge of analytical instrumentation, including Inductive-Coupled Plasma (ICP) Spectroscopy, X-Ray Diffraction (XRD), Ion Chromatography (IC) and Scanning Electron Microscopy with Energy Dispersive X-Ray with novel applications for Mineral Liberation Analysis (SEM/EDX/MLA) is gained through Materials Characterization & Analysis. Environmental Degradation of Materials and Process Instrumentation and Control are examples of required courses with a relationship to each of the disciplines. During the junior and senior years, increasing emphasis is placed on engineering design. The program culminates with real-world design projects in the two-semester course M&ME Design.

(return to Degrees and Options Page)